武汉理工大学汽车学院欢迎您-威尼斯人最新

| | | |

姓名: 陈胜

出生年月:1977年8月

职称:教授

硕/博士生导师:博导

邮箱:

研究方向:1.传热传质模拟2.低碳能源3.反应多相流动模拟、燃烧与排放

 

教育背景:

2005年 华中科技大学博士(硕博连读)

2000年华中科技大学学士

 

工作经历:

2019年 -武汉理工大学     授,博士生导

2016年-2019年  诺丁汉大学   讲师

2012年-2013年   伦敦城市学院  牛顿学者

2009年-2016年 华中科技大学  副教授

2008年-2009年 布伦瑞克理工  洪堡学者

 

项目情况:

主持国家自然科学基金项目两项

主持教育部博士点基金一项

参与项目若

 

 

代表性学术成果

发表sci论文90余篇,h指数25。论文节选如

1) clean energies and technologies for power systems

[1] chen, s*., liu, h., zheng, c.g. (2017): methane combustion in mild oxyfuel regime: influences of dilution atmosphere in co-flow configuration. energy 121, 159

[2] liu, j., liu, z., chen, s., et al.. (2017):  a numerical investigation on flame stability of oxy-coal combustion: effects of blockage ratio, swirl number, recycle ratio and partial pressure ratio of oxygen. international journal of greenhouse gas control  57, 63 

[3] liu, y., chen, s*., liu, s., et al. (2016): methane combustion in various regimes: first and second thermodynamic-law comparison between air-firing and oxyfuel condition. energy 115, 26

[4] tu,y., su, k., liu, h., chen, s., et al. (2016):  physical and chemical effects of co2 addition on ch4/h2 flames on a jet in hot coflow (jhc) burner. energy fuels   30,  1390

[5] liu, y., chen, s*., yang, b., et al. (2015): first and second thermodynamic-law comparison of biogas mild oxy-fuel combustion moderated by co2 or h2o.  energy conversion and management  106, 625

[6] tu,y., liu, h., chen, s.,  et al. (2015): effects of furnace chamber shape on the mild combustion of natural gas. appl. therm. eng. 76, 64

[7] tu,y., liu, h., su, k., chen, s.,  et al. (2015): numerical study of h2o addition effects on pulverized coal oxy-mild combustion.  fuel processing technology,  138, 252-262

[8] tu,y., liu, h., chen, s.,  liu, z., and zheng, c.g. (2015): numerical study of combustion characteristics for pulverized coal under oxy-mild operation. fuel process. technol. 135, 80  

[9] wang, l., liu, z., chen, s.,  zheng, c.g. and li, j. (2013): physical and chemical effects of co2 and h2o additives on counterflow diffusion flame burning methane. energy fuels 27, 7602

[10] chen, s*., mi, j., liu, h. and zheng, c.g. (2012): first and second law analysis of hydrogen-air counter-flow diffusion combustion in various combustion modes. int. j. hydrog. energy 37, 5234

[11] liu, j., chen, s., liu, z., peng, k., zhou, n., huang, x., zhang, t. and zheng, c.g. (2012): mathematical modeling of air- and oxy-coal confined swirling flames on two extended eddy-dissipation models. ind. eng. chem. res.  51, 691

[12] wang, l., liu, z., chen, s. and zheng, c.g. (2012): comparison of different global combustion mechanisms for use in cfd modeling under hot and diluted oxidation condition. combust. sci. technol.  184, 259

[13] chen, s*. and zheng, c.g. (2011): counterflow diffusion flame of hydrogen-enriched biogas under mild oxy-fuel condition. int. j. hydrog. energy 36, 15403

[14] li, p., mi, j., dally, b.b., wang, f., wang, l., liu, z., chen, s. and zheng, c.g. (2011): progress and recent trend in mild combustion. sci. china ser. e-technol. sci. 54, 255

[15] chen, s*. (2010): analysis of entropy generation in counter-flow premixed hydrogen-air combustion. int. j. hydrog. energy 35, 1401

[16] chen, s*. li, j., han, h.f., liu, z.h. and zheng, c.g. (2010): effects of hydrogen addition on entropy generation in ultra-lean counter-flow methane-air premixed combustion. int. j. hydrog. energy 35, 3891

[17] chen, s*., han, h.f., liu, z.h., li, j. and zheng, c.g. (2010): analysis of entropy generation in non-premixed hydrogen versus heated air counterflow combustion, int. j. hydrog. energy 35, 4736

[18] chen, s*., liu, z., liu, j., li, j., wang, l. and zheng, c.g. (2010): analysis of entropy generation in hydrogen-enriched ultra-lean counter-flow methane–air non-premixed combustion. int. j. hydrog. energy 35, 12491

[19] chen, s*., liu, z., zhang, c., he, z., tian, z., shi, b. and zheng, c.g. (2006): a simple lattice boltzmann scheme for low mach number reactive flows.  sci. china ser. e-technol. sci. 49, 714

[20] chen, s*., liu, z., he, z., zhang, c., tian, z., shi, b. and zheng, c.g. (2006): a novel lattice boltzmann model for reactive flows with fast chemistry. chin. phys. lett. 23, 656

[21] zhang c., chen, s., zheng, c.g. and lou, x. (2007): thermoeconomic diagnosis of a coal fired power plant. energy conv. manag. 48, 405

 

2) multiphase flow

[22] yang, b., chen, s*. (2018): simulation of interaction between a freely moving solid particle and a freely moving liquid droplet by lattice boltzmann method. int. j. heat mass transf. 127, 474

[23] gong, w. yan, y.  chen, s. wright, e. (2018): a modified phase change pseudopotential lattice boltzmann model.  int. j. heat mass transf. 125, 323

[24] gong, w. yan, y. y.  chen, s. (2018):  a study on the unphysical mass transfer of scmp pseudopotential lbm. int. j. heat mass transf., 123, 815 

[25] yang, b., chen, s*., kai liu. (2017):   direct numerical simulations of particle sedimentation with heat transfer using the lattice boltzmann method. int. j. heat mass transf.  104, 419

[26] yang, b., chen, s*., xiong, y., et al. (2017):  size and thermal effects on sedimentation behaviors of two spheres. int. j. heat mass transf., 114, 198

[27] gong, w., zu, y., chen, s., yan, y. y. (2017):   wetting transition energy curves for a droplet on a square-post patterned surface. science bulletin  62, 136

[28] gong, w. yan, y. y.  chen, s, et al. (2017):   numerical study of wetting transitions on biomimetic surfaces using a lattice boltzmann approach with large density ratio.  j. bionic eng.  14, 486 

[29] gong, w., chen, s., yan, y. y.  (2017):  a thermal immiscible multiphase flow simulation by lattice boltzmann method. int. comm. heat mass transf. 88, 136

[30] yang, b., chen, s*., cao, c., et al. (2016):  lattice boltzmann simulation of two cold particles settling in newtonian fluid with thermal convection. int. j. heat mass transf., 93, 477

[31] cao, c., chen, s., li, j. liu, z., zha, l., bao, s., and zheng c.g. (2015): simulating the interactions of two freely settling spherical particles in newtonian fluid using lattice-boltzmann method. appl. math. comput.  250, 533

[32] bao, s., chen, s.*, liu, z., li, j., wang, h. and zheng c.g. (2012): simulation of the flow around an upstream transversely oscillating cylinder and a stationary cylinder in tandem. phys. fluids 24, 023603

[33] bao, s., chen, s., liu, z. and zheng c.g. (2012): lattice boltzmann simulation of the convective heat transfer from a stream-wise oscillating circular cylinder. int. j. heat fluid flow 37,147

[34] chen, s., liu, z., shi, b. and zheng, c.g. (2006): computation of gas-solid flows by finite difference boltzmann equation. appl. math. comput. 173, 33

[35] chen, s., liu, z., shi, b., he, z. and zheng, c.g. (2005): a novel incompressible finite-difference lattice boltzmann equation for particle-laden flow. acta mech. sin. 21, 574

[36] chen, s., liu, z., shi, b. and zheng, c.g. (2005): external body force in finite difference lattice boltzmann method.  j. hydrodynamics 17, 473

[37] chen, s., shi, b., liu, z., he, z., guo, z.l. and zheng, c.g. (2004): lattice-boltzmann simulation of particle-laden flow over a backward-facing step. chin. phys. 13,1657

 

 

招生专业

机械工程(含车辆工程,汽车电子工程,汽车运用工程)

动力工程及工程热物理

车辆工程

 

 

研究生招生

本课题组主要进行能源相关领域的科学理论及工程应用研究,具有先进的实验及数值计算平台,并与国内外知名高校建立了良好的科研合作关系。邀请有科研兴趣,学术志向,相关专业基础较好的同学报考博士或硕士研究生。通过系统的科研培训和专业学习,本课题组力争为毕业生创造良好的学术条件及出国深造的机会。同时也热忱欢迎相关专业毕业生跨专业报考!

威尼斯人最新的联系方式:isdongyue@163.com,欢迎各位专家,学者,同学来本课题组参观指导。

  

汽车学院微平台

更多

下载中心

网站地图